

Freedom and Constraint Topology: Design Chart

Legend:

Flexure elastic deformation limit (approx):

Degrees of freedom legend:

1° of freedom:

3° of freedom:

2° of freedom:

Degrees of freedom:

One wire constrains one degree of freedom in an exactly constrained flexure. Redundant wires result in an overconstrained flexure. Only serial flexures are under-constrained.

Screws:

For a screw motion, pitch is defined as a ratio of translation over rotation.

 $pitch = \frac{1}{tan(angle at wires)}$

Serial | Parallel:

For a serial flexure, the final freedom space is the sum of intermediate freedom

For a parallel flexure, intersection defines the new freedom space.

4° of freedom:

5° of freedom:

Freedom space

Constraint space

Freedom space Constraint space

0° of freedom:

Freedom space Constraint space

Freedom space Constraint space